viernes, 26 de marzo de 2010

ACID0 ACETIL SALICILICO


El ácido acetilsalicílico o AAS



es un fármaco de la familia de los salicilatos, usado frecuentemente como antiinflamatorio, analgésico, para el alivio del dolor leve y moderado, antipirético para reducir la fiebre y antiagregante plaquetario indicado para personas con alto riesgo de coagulación sanguínea,[1] principalmente individuos que ya han tenido un infarto agudo de miocardio.[2] [3]
Los efectos adversos de la aspirina son principalmente gastrointestinales, es decir, úlceras gástricas y sangrado estomacal. En pacientes menores de 14 años se ha dejado de usar la aspirina para el control de los síntomas de la gripe o de la varicela debido al elevado riesgo de contraer el síndrome de Reye.[4]
· HISTORIA
La corteza de sauce blanco (Salix alba; "Salix", que significa "sauce" en latín, es el nombre del género) ha sido usada desde tiempo inmemorial para el alivio de la fiebre y del dolor, incluso por Hipócrates en el siglo V a. C.,[5] los antiguos egipcios y los amerindios.[6] Los efectos medicinales del sauce blanco continuaron siendo mencionados por observadores del pasado, incluyendo al farmacéutico Plinio el Viejo, al naturista Dioscórides y al filósofo Galeno.
En 1763 Edward Stone, reverendo de la Iglesia de Inglaterra, presentó un informe a Lord Macclesfield, quien presidía la Real Sociedad de Ciencia Inglesa, referente a estas propiedades terapéuticas de la corteza de sauce blanco destacando su efecto antipirético.[7] Stone describió en su trabajo que había administrado el extracto en forma de o cerveza a 50 pacientes febriles, aliviándoles el síntoma.[8] [9] Investigaciones posteriores condujeron al principio activo de esta planta, que los científicos llamaron salicilina, un análogo del ácido salicílico y del ácido acetilsalicílico.[10]
El principio activo fue aislado en 1828 por Johann Buchner, profesor de farmacia en la Universidad de Múnich; se trataba de una sustancia amarga y amarillenta extraída de agujas cristalinas que llamó salicina.[5] Dos años antes, los italianos Brugnatelli y Fontana aislaron ese mismo extracto, pero en forma muy impura, y no lograron demostrar que la sustancia era la causante de los efectos farmacológicos del sauce blanco.[10] En 1829 un farmacéutico francés, Henri Leroux, improvisó un procedimiento de extracción del que obtuvo 30 gramos de salicilina a partir de 1.5 kg de corteza. En 1838 Raffaele Piria, un químico italiano, laborando en La Sorbona de París logró separar la salicina en azúcar y un componente aromático llamado salicilaldehído.[8] A este último compuesto lo convirtió, por hidrólisis y oxidación, en cristales incoloros a los que puso por nombre ácido salicílico.[5]


· Vías de administración (formas de uso




Aspirina con cubierta entérica para administración por vía oral.
El ácido acetilsalicílico se administra principalmente por vía oral, aunque también existe para uso rectal y como terapia intravenosa. Los comprimidos de aspirina para administración oral se hidrolizan con facilidad cuando se ven expuestos al agua o aire húmedo, de modo que deben permanecer almacenados en sus envoltorios hasta el momento de su administración. La aspirina que se hidrolizado así despide un olor a vinagre (en realidad es ácido acético) y no debe ingerirse. La aspirina también viene en preparados masticables para adultos. Los preparados efervescentes y saborizados son aptos para quienes prefieran la administración líquida del medicamento.[22] Es mayor la probabilidad de problemas severos del estómago con la aspirina que no tiene recubrimiento entérico.[23]

· Absorción
La aspirina tiene muy escasa solubilidad en condiciones de pH bajo, como ocurre en el estómago, hecho que puede retardar la absorción de grandes dosis del medicamento unas 8-24 horas. Todos los salicilatos, incluyendo la aspirina, se absorben rápidamente por el tracto digestivo a la altura del duodeno y del intestino delgado, alcanzando la concentración máxima en el plasma sanguíneo al cabo de 1 a 2 horas.[24] Por ser un ácido débil, muy poco queda remanente en forma ionizada en el estómago después de la administración oral del ácido salicílico. Debido a su baja solubilidad, la aspirina se absorbe muy lentamente en casos de sobredosis, haciendo que las concentraciones plasmáticas aumenten de manera continua hasta 24 horas después de la ingesta.[25] [26] [27] La biodisponibilidad es muy elevada, aunque la absorción tiende a ser afectada por el contenido y el pH del estómago.
· Distribución
La unión del salicilato a las proteínas plasmáticas es muy elevada, superior al 99%, y de dinámica lineal.[14] La saturación de los sitios de unión en las proteínas plasmáticas conduce a una mayor concentración de salicilatos libres, aumentando el riesgo de toxicidad. Presenta una amplia distribución tisular, atravesando las barreras hematoencefálica y placentaria. La vida media sérica es de aproximadamente 15 minutos. El volumen de distribución del ácido salicílico en el cuerpo es de 0,1–0,2 l/kg. Los estados de acidosis tienden a incrementar el volumen de distribución porque facilitan la penetración de los sacililatos a los tejidos.[27]
· Metabolismo
La aspirina se hidroliza parcialmente a ácido salicílico durante el primer paso a través del hígado. Este metabolismo hepático está sujeto a mecanismos de saturación, por lo que al superarse el umbral, las concentraciones de la aspirina aumentan de manera desproporcionada en el organismo. También es hidrolizada a ácido acético y salicilato por esterasas en los tejidos y la sangre.



· Mecanismo de acción


Estructura de una molécula de COX-2 inactivada por la Aspirina. En el sitio de acción de cada uno de los monómeros de la COX-2, la aspirina (la molécula gris más pequeña) ha acetilado a la serina de la posición 530. También en la imagen se ve el cofactor hemo con un átomo de hierro (la molécula gris con el hierro de color marrón).
Los mecanismos biológicos para la producción de la inflamación, dolor o fiebre son muy similares. En ellos intervienen una serie de sustancias que tienen un final común. En la zona de la lesión se generan unas sustancias conocidas con el nombre de prostaglandinas. Se las podría llamar también "mensajeros del dolor". Estas sustancias informan al sistema nervioso central de la agresión y se ponen en marcha los mecanismos biológicos de la inflamación, el dolor o la fiebre. En 1971 el farmacólogo británico John Robert Vane demostró que el ácido acetilsalicílico actúa interrumpiendo estos mecanismos de producción de las prostaglandinas y tromboxanos.[28] [29] Así, gracias a la utilización de la aspirina, se restablece la temperatura normal del organismo y se alivia el dolor. La capacidad de la aspirina de suprimir la producción de prostaglandinas y tromboxanos se debe a la inactivación irreversible de la ciclooxigenasa (COX), enzima necesaria para la síntesis de esas moléculas proinflamatorias. La acción de la aspirina produce una acetilación (es decir, añade un grupo acetilo) en un residuo de serina del sitio activo de la COX.
· Efectos
Efectos antiinflamatorios
La aspirina es un inhibidor no selectivo de ambas isoformas de la ciclooxigenasa, pero el salicilato, el producto metabólico normal de la aspirina en el cuerpo, es menos eficaz en la inhibición de ambas isoformas. Los salicilatos que no son acetilados pueden tener funciones en la eliminación de radicales del oxígeno. La aspirina inhibe irreversiblemente a la COX-1, modifica la actividad enzimática de la COX-2 e inhibe la agregación plaquetaria, no así las especies no acetiladas del salicilato.[14] Por lo general, la COX-2 produce los prostanoides, la mayoría de los cuales son proinflamatorios. Al ser modificada por la aspirina, la COX-2 produce en cambio lipoxinas, que tienden a ser antiinflamatorias. Los AINEs más recientes se han desarrollado para inhibir la COX-2 solamente y así reducir los efectos secundarios gastrointestinales de la inhibición de la COX-1.[16]
La aspirina también interfiere con los mediadores químicos del sistema calicreína-cinina, por lo que inhibe la adherencia de los granulocitos sobre la vasculatura que ha sido dañada, estabiliza los lisosomas evitando así la liberación de mediadores de la inflamación e inhibe la quimiotaxis de los leucocitos polimorfonucleares y macrófagos.[14]
Efectos analgésicos
La aspirina es más eficaz reduciendo el dolor leve o de moderada intensidad por medio de sus efectos sobre la inflamación y porque es probable que pueda inhibir los estímulos del dolor a nivel cerebral subcortical. Es un ácido orgánico débil que tiene al mismo tiempo una función de ácido carboxílico y de fenol ya que también se le considera el orto fenol del acido benzoico (su nombre es ortofenometiloico). Tiene características antiinflamatorias pero debido a que provoca irritaciones estomacales no se aplica como tal sino en forma de sus derivados, siendo los más conocidos el ácido acetilsalicílico ("Aspirina") y el salicilato de metilo (el éster con el alcohol metílico).
Efectos antipiréticos
La aspirina reduce la fiebre, mientras que su administración sólo afecta ligeramente a la temperatura normal del cuerpo. Los efectos antipiréticos de la aspirina probablemente están mediados tanto por la inhibición de la COX en el sistema nervioso central como por la inhibición de la interleucina-1,[14] liberada por los macrófagos durante los episodios de inflamación.
Se ha demostrado que la aspirina interrumpe la fosforilación oxidativa en las mitocondrias de los cartílagos y del hígado al difundir al espacio que está entre las dos membranas de la mitocondria y actuar como transportador de los protones requeridos en los procesos de la respiración celular.[30] Con la administración de dosis elevadas de aspirina se observa la aparición de fiebre debido al calor liberado por la cadena de transporte de electrones que se encuentra en la membrana interna de las mitocondrias, contrariamente a la acción antipirética de la aspirina a dosis terapéuticas. Además, la aspirina induce la formación de radicales de óxido nítrico (NO) en el cuerpo, lo cual reduce la adhesión de los leucocitos, uno de los pasos importantes en la respuesta inmune a infecciones, aunque aún no hay evidencias concluyentes de que la aspirina sea capaz de combatir una infección.[31] Datos publicados recientemente sugieren que el ácido salicílico y otros derivados de la aspirina modulan sus acciones de señalización celular por medio del NF-κB,[32] un complejo de factores de transcripción que juegan un papel importante en muchos procesos biológicos, incluida la inflamación.
Efectos antiplaquetarios
Las dosis bajas de aspirina, de 81 mg diarios, producen una leve prolongación en el tiempo de sangrado, que se duplica si la administración de la aspirina continúa durante una semana. El cambio se debe a la inhibición irreversible de la COX de las plaquetas, por lo que se mantiene durante toda la vida de las mismas (entre 8 y 10 días).[14] Esa propiedad anticoagulante hace que la aspirina sea útil en la reducción de la incidencia de infartos en algunos pacientes.[33] 40 mg de aspirina al día son suficientes para inhibir una proporción adecuada de tromboxano A2, sin que tenga efecto inhibitorio sobre la síntesis de prostaglandina I2, por lo que se requerirán mayores dosis para surtir efectos antiinflamatorios.[34]
En el año 2008 un ensayo demostró que la aspirina no reduce el riesgo de aparición de un primer ataque cardiaco o accidente cerebrovascular, sino que reduce el riesgo de un segundo evento para quienes ya han sufrido un ataque cardiaco o un accidente cerebrovascular. En mujeres que toman dosis bajas de aspirina cada dos días se disminuye el riesgo de un accidente cerebrovascular, pero no es un tratamiento que pueda alterar sustancialmente el riesgo de un infarto o muerte cardiovascular.[35] En general, para un paciente que no tiene enfermedad cardíaca, el riesgo de sangrado supera cualquier beneficio de la aspirina.[36]


Interacciones
Artículo principal: Interacción farmacológica
El ácido acetilsalicílico ha sido profusamente estudiado lo que, añadido a su antigüedad, nos ha dado un amplio conocimiento de las interacciones con otros fármacos. Debido a la gravedad de los posibles efectos adversos como consecuencia de estas interacciones, hay que tenerlas muy presentes a la hora de su prescripción. Las más importantes están recogidas en las siguientes tablas, realizadas en función de los mecanismos de producción de las interacciones.
Interacciones farmacodinámicas del ácido acetilsalicílico[37]
Fármaco
Resultados de la interacción.
Antiinflamatorios no esteroideos (AINE)
Puede incrementar el riesgo de úlceras y de hemorragias gastrointestinales, debido a un efecto sinérgico.
Corticoides
Puede incrementar el riesgo de úlceras y de hemorragias gastrointestinales, debido a un efecto sinérgico.
Diuréticos
La administración conjunta puede ocasionar un fallo renal agudo, especialmente en pacientes deshidratados. En caso de que se administren de forma simultánea ácido acetilsalicílico y un diurético, es preciso asegurar una hidratación correcta del paciente y monitorizar la función renal al iniciar el tratamiento.
• Inhibidores selectivos de la recaptación de serotonina (ISRS)
Aumenta el riesgo de hemorragia en general y de hemorragia digestiva alta en particular.
• Anticoagulantes orales
Aumenta el riesgo de hemorragia, por lo que no se recomienda. Si resulta imposible evitar una asociación de este tipo, se requiere una monitorización cuidadosa del INR.
Trombolíticos y antiagregantes plaquetarios
Aumenta el riesgo de hemorragia.
• Inhibidores de la enzima convertidora de la angiotensina (IECA)
• Antagonistas de los receptores de la angiotensina II (ARA II)
Ejercen un efecto sinérgico en la reducción de la filtración glomerular, que puede ser exacerbado en caso de alteración de la función renal. La administración a pacientes ancianos o deshidratados, puede llevar a un fallo renal agudo por acción directa sobre la filtración glomerular. Además, pueden reducir el efecto antihipertensivo, debido a la inhibición de prostaglandinas con efecto vasodilatador.
• β-bloqueantes
Disminución del efecto antihipertensivo debido a una inhibición de las prostaglandinas con efecto vasodilatador.
Insulina y sulfonilureas
Aumenta el efecto hipoglucemiante.
Ciclosporina
Aumenta la nefrotoxicidad de la ciclosporina debido a efectos mediados por las prostaglandinas renales.
Vancomicina
Aumenta el riesgo de ototoxicidad de la vancomicina.
Interferón α
Disminuye la actividad del interferón-α.
Alcohol
Aumenta el riesgo de hemorragia digestiva.
Las interacciones farmacocinéticas van a cubrir prácticamente todo el espectro de posibilidades en cuanto al mecanismo de producción, aunque se muestran como más interesantes las de origen metabólico. En este sentido, parece ser independiente de la CYP3A4 y, al igual que otros AINE, estar ligada a la CYP2C9. No obstante, su abundante metabolismo al margen del hígado, hace que no sean fundamentales sus interacciones a nivel del citocromo P450. Las más interesantes se muestran en la siguiente tabla: